THE DIMENSION OF BASIC SETS

JOHN M. FRANKS

Let $f: M \to M$ be a C^1 diffeomorphism of a compact connected manifold M. A closed f-invariant set $\Lambda \subset M$ is said to be hyperbolic if the tangent bundle of M restricted to Λ is the Whitney sum of two Df-invariant bundles, i.e., if $T_AM = E^u(\Lambda) \oplus E^s(\Lambda)$, and if there are constants C > 0 and $0 < \lambda < 1$ such that

$$|Df^n(V)| \le C\lambda^n |v|$$
 for $v \in E^s$, $n > 0$,
 $|Df^{-n}(V)| \le C\lambda^n |v|$ for $v \in E^u$, $n > 0$.

The diffeomorphism f is said to satisfy $Axiom\ A$ if (a) the non-wandering set $\Omega(f) = \{x \in M : U \cap \bigcup_{n>0} f^n(U) \neq \emptyset \text{ for every neighborhood } U \text{ of } x\}$ of f is a hyperbolic set, and (b) $\Omega(f)$ equals the closure of the set of periodic points of f. If f satisfies Axiom A, one has the spectral decomposition theorem of Smale [9] which says $\Omega(f) = \Lambda_1 \cup \cdots \cup \Lambda_l$ where Λ_i are pairwise disjoint, f-invariant closed sets and $f|_{A_i}$ is topologically transitive.

These A_i are called the basic sets of f, and it is the object of this article to investigate restrictions on their dimensions imposed by the homotopy type of f and the fiber dimensions of the bundles E^s and E^u . In [11] S. Smale showed that any diffeomorphism can be isotoped to a diffeomorphism satisfying Axiom A with all basic sets of dimension zero. This disproved earlier conjectures that some homotopy classes might contain only diffeomorphisms with a basic set of positive dimension. Theorem 1 below shows that if one restricts either the fiber dimensions of the bundles E^u or the total number of basic sets for f, then there are indeed homotopy classes all of whose diffeomorphisms (subject to these restrictions) have basic sets of positive dimension. In Theorem 2 we investigate diffeomrphisms with a single infinite basic set, the others being isolated periodic orbits. It is a pleasure to acknowledge valuable conversations with R. F. Williams.

We consider diffeomorphisms which in addition to Axiom A satisfy the nocycle property [10] which we now define. If Λ_i is a basic set of f then its stable and unstable manifolds ([5] or [9]) are defined by

$$W^s(\Lambda_i) = \{x \in M \mid d(f^n(x), \Lambda_i) \to 0 \text{ as } n \to \infty\}$$
,

Communicated by R. Bott, July 11, 1975. This research was supported in part by NSF Grant GP42329X.

$$W^{u}(\Lambda_{i}) = \{x \in M \mid d(f^{-n}(x), \Lambda_{i}) \to 0 \text{ as } n \to \infty\}$$
.

One says $\Lambda_i \leq \Lambda_j$ if $W^u(\Lambda_j) \cap W^s(\Lambda_i) \neq \emptyset$. If this extends to a total ordering on the basic sets Λ_i , then f is said to satisfy the *no-cycle property* and we re-index so that $\Lambda_i \leq \Lambda_j$ when $i \leq j$. If Λ_i is a basic set of $f: M \to M$ then we define the *index* u_i of Λ_i with respect to f to be the fiber dimension of $E^u(\Lambda_i)$. All homology and cohomology will be singular with real coefficients unless otherwise stated.

Theorem 1. If $f: M \to M$ satisfies Axiom A and the no-cycle property and $H^k(M) \neq 0$, then there is a basic set Λ_i satisfying dim $\Lambda_i \geq |k - u_i|$ where u_i is the index of Λ_i .

Hence, if f has fewer basic sets than nonzero cohomology groups, it must have a basic set of positive dimension, or equivalently:

Corollary 1. If f has only basic sets of dimension zero, then there is a basic set Λ_i with index $u_i = k$ for each k such that $H^k(M) \neq 0$.

Theorem 2. Suppose $f: M \to M$ satisfies Axiom A and the no-cycle property and has one infinite basic set Λ , the others being isolated periodic orbits. If $f^*: H^k(M) \to H^k(M)$ has an eigenvalue which is not a root of unity, then $\dim \Lambda \ge |n-2k|$ where $n = \dim M$. It Λ is an attractor, then $\dim \Lambda \ge \max\{(n-k), k\}$.

We note that M. Shub [8] has shown that whenever $f^*: H^*(M) \to H^*(M)$ has an eigenvalue which is not a root of unity, then f must have at least one infinite basic set.

In case M is the n-dimensional torus T^n we can strengthen Theorem 2 because either $f^*: H^1(T^n) \to H^1(T^n)$ has an eigenvalue which is not a root of unity or $f^*: H^*(T^n) \to H^*(T^n)$ is quasi-unipotent (i.e., has only roots of unity as eigenvalues).

Corollary 2. If $f^*: T^n \to T^n$ satisfies Axiom A and the no-cycle property and has only one basic set Λ which is infinite, then either $f^*: H^*(T^n) \to H^*(T^n)$ is quasi-unipotent or dim $\Lambda \geq n-2$.

It is not difficult to construct diffeomorphisms on T^n with a single infinite basic set of dimension n, n-1, but the author does not know if there is a diffeomorphism of T^3 which is not unipotent on homology and with a single infinite basic set of dimension one (dimensions 2 and 3 can be realized in this case). The hypothesis that f^* not be quasi-unipotent on cohomology is necessary since it is easy to construct $f: T^n \to T^n$ homotopic to the identity with a single infinite basic set of dimension zero.

We review briefly the filtrations of [10] associated with a diffeomorphism which satisfies Axiom A and the no-cycle property. It is possible to find submanifolds (with boundary and of the same dimension as M),

$$M = M_1 \supset \cdots \supset M_1 \supset M_0 = \emptyset$$
,

such that

$$egin{aligned} M_{i-1} \, \cup \, f(M_i) \subset & \operatorname{int} M_i \; , \ & \varLambda_i = \bigcap\limits_{m \in Z} f^m(M_i - M_{i-1}) \; , \ & W^u(\varLambda_i) \, \cup \, M_{i-1} = M_{i-1} \, \cup \bigcap\limits_{m > 0} f^m(M_i) \; . \end{aligned}$$

Henceforth $f: M \to M$ will be a diffeomorphism of a compact manifold satisfying Axiom A and the no-cycle property and $M = M_l \supset M_{l-1} \supset \cdots \supset M_0 = \emptyset$ will be a filtration for f. The proofs of Theorems 1 and 2 use the following proposition which may be of some independent interest.

Proposition 1. Suppose $f: M \to M$ satisfies Axiom A and the no-cyclic property and $\Lambda_i \subset M_i - M_{i-1}$ is a basic set of f. Let $S = \{k \mid f_k^* : H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1}) \text{ has a nonzero eigenvalue}\}$. Then $\dim \Lambda_i \geq \max S - \min S$.

We procede now with a sequence of lemmas leading to the proofs of the results above. We will use closed local stable and unstable manifolds of a point $x \in \Lambda$, denoted $W^s_*(x)$ and $W^u_*(x)$ (see [5] or [9]).

Since it is not in general true that dim $(X \times Y) = \dim X + \dim Y$ it is necessary to use the concept of *cohomological dimension over* R [3] defined as follows: If X is a compact Housdorff space, then $\dim_R X = \sup\{k \mid \check{H}^k(X, A; R) \neq 0\}$ where A runs over all closed subspaces of X and \check{H}^k is Čech cohomology with real coefficients. By a result of [7, p. 152] $\dim_R X \leq \dim X$.

Lemma 1. Suppose $\Lambda_i \subset M_i - M_{i-1}$ is a basic set for f and M_i, M_{i-1} are the elements of a filtration for f. If $k > \dim_R W^u_*(\Lambda_i)$, then the map $f_k^* : H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ is nilpotent.

Proof. This is essentially the same as [4, Lemma 6] which drew heavily on [1]. Let $X = W^u(\Lambda_i) \cup M_{i-1}$ and let \check{H}^k denote Čech cohomology with real coefficients. We use the closed local unstable manifolds of [5]. The inclusion $(W^u_{\epsilon}(\Lambda_i), \partial W^u_{\epsilon}(\Lambda_i)) \to (X, W)$ is a relative homeomorphism where $W = cl(X - W^u_{\epsilon}(\Lambda_i))$. Hence by a standard result [12, p. 266],

$$\check{H}^k(W^u_{{}_{\mathfrak{s}}}(\varLambda_i),\partial W^u_{{}_{\mathfrak{s}}}(\varLambda_i))\cong \check{H}^k(X,W)\ .$$

By definition of dim_R,

$$\check{H}^k(W^u_{\epsilon}(\Lambda_i), \partial W^u_{\epsilon}(\Lambda_i)) = 0$$
,

when $k > \dim_{\mathbb{R}} W^{n}_{i}(\Lambda_{i})$. Since W is compact and $X \subset \{\bigcap_{n\geq 0} f^{-n}(\operatorname{int} M_{i-1})\}$ $\cup \Lambda_{i}$ it follows that $f^{m}(W) \subset M_{i-1}$ for some m > 0. The diagram

$$(X, M_{i-1}) \xrightarrow{i} (X, W)$$

$$f^{m} \qquad f^{m}$$

$$(X, M_{i-1})$$

commutes. Thus the map $(f^m)^* : \check{H}^k(X, M_{i-1}) \to \check{H}^k(X, M_{i-1})$ factors through $\check{H}^k(X, W)$ so that $(f^m)^* = (f^*)^m = 0$ when $k > \dim_R W^u(\Lambda_i)$.

Now if $f^*: H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ is not nilpotent, there is a subspace $V \neq 0$ with $f^*(V) = V$. By [1, Lemma 1], the map h^* is one-to-one on V where $h^*: H^k(M_i, M_{i-1}) = \check{H}^k(M_i, M_{i-1}) \to \check{H}^k(X, M_{i-1})$ is induced by the inclusion $h: (X, M_{i-1}) \to (M_i, M_{i-1})$. Thus we have a commutative diagram

But, $(f^*)^m h^*(V) = h^*(f^*)^m V = h^*(V) \neq 0$, which is a contradiction if $k > \dim_R W^u(\Lambda_i)$, since $(f^*)^m : \check{H}^k(X, M_{i-1}) \to \check{H}^k(X, M_{i-1})$ is zero in this case. Thus it must be the case that $f^* : H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ is nilpotent when $k > \dim_R W^u(\Lambda_i)$. q.e.d.

If Λ is a basic set and $x \in \Lambda$, we let $\hat{W}^s_{\epsilon}(x) = W^s_{\epsilon}(x) \cap \Lambda$ and $\hat{W}^u_{\epsilon}(x) = W^u_{\epsilon}(x) \cap \Lambda$. While it is true [9] that $x \in \Lambda$ has a neighborhood homeomorphic to $\hat{W}^s_{\epsilon}(x) \times \hat{W}^u_{\epsilon}(x)$, it appears to be an open question whether or not dim $\Lambda = \dim \hat{W}^s_{\epsilon}(x) + \dim \hat{W}^u_{\epsilon}(x)$. For the cohomological dimension over R however we have the following.

Lemma 2. Suppose Λ is a basic set for $f, u = \text{fiber dim } E^u(\Lambda)$, and $s = \text{fiber dim } E^s(\Lambda)$. Then

- (a) $\dim_R W^u_{\epsilon}(\Lambda) = \dim_R \hat{W}^s_{\epsilon}(x) + u$,
- (b) $\dim_R W^s_{\epsilon}(\Lambda) = \dim_R \hat{W}^u_{\epsilon}(x) + s$,
- (c) $\dim_R \Lambda = \dim_R \hat{W}^u_{\epsilon}(x) + \dim_R \hat{W}^s_{\epsilon}(x),$

where x is any point of Λ and $\varepsilon > 0$ is sufficiently small.

Proof. We will use the following results from [13, Theorem 2.2 and Lemma 2.1]. If X and Y are compact Hausdorff spaces, then (1) $\dim_R (X \times Y) = \dim_R X + \dim_R Y$, and (2) if $n = \dim_R X$, there exists a point $p \in X$ such that if U is any sufficiently small neighborhood of p in X, then $\check{H}^n(X, X - U) \neq 0$.

Also if Y is a compact subset of X, then consideration of the exact sequence of the triple (X, Y, A), where A is a closed subset of Y,

$$\check{H}^n(X,A) \longrightarrow \check{H}^n(Y,A) \stackrel{\delta}{\longrightarrow} \check{H}^{n+1}(X,Y)$$
,

shows that $\dim_R X \ge \dim_R Y$.

We begin the proof of (a) by showing that $\dim_R \hat{W}^s(x)$ is independent of $x \in \Lambda$. If $y \in \Lambda$, then using the canonical coordinates [9, p. 781] for Λ and the fact that $W^s(\text{orb }(y))$ is dense in Λ it is easy to show that $\hat{W}^s(x)$ is homeomorphic to a compact subset of $f^m(\hat{W}^s(y))$ for some m. This implies $\hat{W}^s(x)$ is homeomorphic to a subset of $\hat{W}^s(y)$ since f^m is a diffeomorphism. Thus $\dim_R \hat{W}^s(x) \leq \dim_R \hat{W}^s(x)$ and the same argument shows $\dim_R \hat{W}^s(y) \leq \dim_R \hat{W}^s(x)$.

By results of [6] there is a continuous map $\varphi: \Lambda \to \operatorname{Emb}(D, M)$ such that $\varphi(z)(D) = W^u_{\epsilon}(z)$ where D is the disk of dimension u. The map $\psi: \hat{W}^s_{\epsilon}(x) \times D \to W^u_{\epsilon}(\Lambda)$ given by $\psi(y,t) = \varphi(y)(t)$ is a homeomorphism onto a compact neighborhood K_x of x in $W^u_{\epsilon}(\Lambda)$. But it is not possible that $\dim_R W^u_{\epsilon}(\Lambda) > \dim K_x$ because the sets K_x cover $W^u_{\epsilon}(\Lambda)$ and by (2) above together with excision at least one of them must have dimension over R equal to that of $W^u_{\epsilon}(\Lambda)$. Thus $\dim_R W^u_{\epsilon}(\Lambda) = \dim_R \hat{W}^s_{\epsilon}(X) + u$ for all $x \in \Lambda$ and (a) is proven. Applying this result to f^{-1} proves (b).

To prove (c) we consider the canonical coordinate map $\rho: \hat{W}^s_{\epsilon}(x) \times \hat{W}^u_{\epsilon}(x) \to \Lambda$ which is a homeomorphism onto a compact neighborhood J_x of x in Λ . By (1) above $\dim_R J_x = \dim_R \hat{W}^s_{\epsilon}(x) + \dim_R \hat{W}^u_{\epsilon}(x)$. Since $J_x \subset \Lambda$, $\dim_R J_x \leq \dim_R \Lambda$ and again using (2) above and excision, it follows that $\dim_R \Lambda = \dim_R J_x$ for some x (and hence for all x since $\dim_R \hat{W}^s_{\epsilon}(x)$ and $\dim_R \hat{W}^u_{\epsilon}(x)$ are independent of x). Thus (c) is proven. q.e.d.

Lemma 3. If $A_3 \xrightarrow{i} A_2 \xrightarrow{j} A_1$ is a sequence of vector spaces exact at A_2 , $\alpha_i : A_i \to A_i$ are linear maps commuting with i and j, and λ is an eigenvalue of α_2 , then λ is also an eigenvalue ef either α_3 or α_1 .

This is [4, Lemma 2]; the proof is not difficult and will not be repeated here.

Lemma 4. If λ is an eigenvalue of $f_k^*: H^k(M) \to H^k(M)$, then there is an M_i in the filtration for f such that $f_k^*: H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ has λ as an eigenvalue.

Proof. Consider the exact cohomology sequence of the triple

$$H^k(M,M_j) \to H^k(M,M_{j-1}) \to H^k(M_j,M_{j-1}) \ .$$

There is a map f^* induced by f on each of these groups, and these maps commute with the maps of the sequence. We now apply Lemma 1 to this sequence when j = 1. In this case the sequence is

$$H^k(M, M_1) \rightarrow H^k(M) \rightarrow H^k(M_1, M_0)$$
,

so either λ is an eigenvalue of f^* on $H^k(M_1, M_0)$ or an eigenvalue of f^* on $H^k(M, M_1)$. If the latter we set j=2 and reapply Lemma 1 to show λ is an eigenvalue of f^* on either $H^k(M_2, M_1)$ or $H^k(M, M_2)$. Continuing this procedure it follows that λ is an eigenvalue of f^* on $H^k(M_i, M_{i-1})$ for some i, since $H^k(M, M_i) = H^k(M, M) = 0$.

Proof of Proposition 1. Let $k_1 = \max S$. Then by Lemma 1, $k_1 \leq \dim_{\mathbb{R}} W^u_{\epsilon}(\Lambda_i)$ and by Lemma 2, $\dim_{\mathbb{R}} W^u_{\epsilon}(\Lambda_i) = \dim_{\mathbb{R}} \hat{W}^s_{\epsilon}(x) + u_i$ where $x \in \Lambda_i$ and $u_i =$ fiber $\dim E^u(\Lambda_i)$, so $k_1 - u_i \leq \dim_{\mathbb{R}} \hat{W}^s_{\epsilon}(x)$. Let $k = \min S$ and let $\tilde{M}_j = cl(M - M_j)$. Then since $f_k^* : H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ has a nonzero eigenvalue, its adjoint $f_{*k} : H_k(M_i, M_{i-1}) \to H_k(M_i, M_{i-1})$ has the same eigenvalue. Suppose M is orientable and $n = \dim M$. Then [1, Lemma 4] shows that if $g = f^{-1} : M \to M$, $g_{n-k}^* : H^{n-k}(\tilde{M}_{i-1}, \tilde{M}_i) \to H^{n-k}(\tilde{M}_{i-1}, \tilde{M}_i)$ is similar to either $f_{*k} : H_k(M_i, M_{i-1}) \to H_k(M_i, M_{i-1})$ or to $-f_{*k}$. In either case g_{n-k}^*

has a nonzero eigenvalue. Since g has the same basic sets as f (with $W^s(f; \Lambda_i) = W^u(g; \Lambda_i)$) and $M = \tilde{M}_0 \supset \tilde{M}_1 \supset \cdots \supset \tilde{M}_l = \emptyset$ is a filtration for g, we can apply to g the argument which showed $k_1 - u_i \leq \dim_R \hat{W}^s(x)$. We have then that (n-k) — fiber $\dim E^u(g; \Lambda_i) \leq \dim_R \hat{W}^s(g; x)$ or $(n-k) - s_i \leq \dim_R \hat{W}^u(f; x)$ where $s_i = \text{fiber } \dim E^s(f; \Lambda_i)$. Adding this inequality to the one for k_1 we have

$$k_1 - u_i + (n - k) - s_i \le \dim_{\mathbb{R}} \hat{W}^s_{\epsilon}(x) + \dim_{\mathbb{R}} \hat{W}^u_{\epsilon}(x) .$$

Since $n = u_i + s_i$, $k_1 - k \le \dim_R \Lambda$ by Lemma 2. That is, $\max S - \min S \le \dim_R \Lambda_i \le \dim \Lambda_i$.

In case M is not orientable, we let $\pi: \overline{M} \to M$ be an oriented double cover of M and $\overline{f}: \overline{M} \to M$ a lift of f. If $\overline{\Lambda}_i = \pi^{-1}(\Lambda_i)$ and $\overline{M}_i = \pi^{-1}(M_i)$, then the $\overline{\Lambda}_i$ have all the properties of basic sets for \overline{f} except they may not be topologically transitive. But \overline{f} together with the nontrivial covering transformation on \overline{M} will be transitive, and this is sufficient for everything we have done. So exactly as above, we use the filtration \overline{M}_i and prove the result for $\overline{\Lambda}_i$ ($\pi_*: H_j(\overline{M}_i, \overline{M}_{i-1}) \to H_j(M_i, M_{i-1})$ is surjective—see [1, Theorem 1]). Since dim $\overline{\Lambda}_i = \dim \Lambda_i$, this completes the proof.

Proof of Theorem 1. If $\lambda \neq 0$ is an eigenvalue of $f^*: H^k(M) \to H^k(M)$ then by Lemma 4 there is an i such that λ is an eigenvalue of $f^*: H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$. Now if $u_i = \text{fiber dim } E^u(\Lambda_i)$, then from the proof of Proposition 1 we have $k - u_i \leq \dim_R \hat{W}^s(x)$ and $u_i - k = (n - k) - s_i \leq \dim_R \hat{W}^s(x)$ for $x \in \Lambda_i$. Since

$$\dim \Lambda_{i} \geq \dim_{\mathbb{R}} \Lambda_{i} = \dim_{\mathbb{R}} \hat{W}^{s}_{i}(x) + \dim_{\mathbb{R}} \hat{W}^{u}_{i}(x)$$

$$> \max \{ (k - u_{i}), (u_{i} - k) \} = |k - u_{i}|,$$

the proof is complete.

Proof of Theorem 2. If $\Lambda_i \subset M_i - M_{i-1}$ is a periodic orbit of period p, then f^p fixes each point of Λ_i and Df^{2p} preserves an orientation on $E^u(\Lambda_i)$. Let $g = f^{2p}$. Since dim $\Lambda_i = 0$, it follows from the proof of Theorem 1 or from [1, Theorem 1] that $g_k^* : H^k(M_i, M_{i-1}) \to H^k(M_i, M_{i-1})$ is nilpotent unless k = fiber dim $E^u(\Lambda_i)$.

Now let $L(g) = \sum_{k=0}^{n} (-1)^k \operatorname{tr}(g_k^*) = (-1)^u \operatorname{tr}(g_u^*)$ where $u = \text{fiber} \dim E^u(\Lambda_i)$. By Lefschetz fixed point theory (see [4, Lemma 3] and [2, Theorem 4.1]). $L(g) = \sum_{q \in \Lambda_i} I(g;q)$ where I(g;q) denotes the index of q under g, which by a result of [9, p. 767] is $(-1)^u$. Hence $(-1)^u \operatorname{tr}(g_u^m)^* = L(g^m) = (-1)^u p$ for all m > 0. That is, $\operatorname{tr}(g_u^m)^* = p$ for all m > 0, and it follows that the only nonzero eigenvalue of g_u^* is 1, with multiplicity p. This is because the nonzero eigenvalues with multiplicity of a matrix A are determined by the poles of $\exp(\sum_{m=1}^{\infty} (\operatorname{tr} A^m) z^m/m)$ (see [1] or [9]) and hence g_u^* has the same nonzero eigenvalues as the $p \times p$ identity matrix. Consequently every nonzero eigenvalue of $f^* : H^*(M_i, M_{i-1}) \to H^*(M_i, M_{i-1})$ is a root of unity when Λ_i is

finite. This argument is essentially a reproof of a result of M. Shub [8].

Suppose now that M is orientable. If λ is an eigenvalue of $f_k^*: H^k(M) \to$ $H^k(M)$ which is not a root of unity, then it follows by Poincaré duality (see [1, Lemma 4]) that $f_*: H_{n-k}(M) \to H_{n-k}(M)$ has an eigenvalue $\pm \lambda^{-1}$ and hence $f_{n-k}^*: H^{n-k}(M) \to H^{n-k}(M)$ has an eigenvalue which is not a root of unity. Hence, if $\Lambda \subset M_s - M_{s-1}$ is the infinite basic set, then $f_i^* : H^j(M_s, M_{s-1})$ $\rightarrow H^{j}(M_{s}, M_{s-1})$ has an eigenvalue which is not a root of unity when j = kand when j = n - k. This follows from Lemma 4 and the fact shown above that $f^*: H^*(M_i, M_{i-1}) \to H^*(M_i, M_{i-1})$ has only roots of unity and zero as eigenvalues when $i \neq s$. Thus by Proposition 1, $\dim \Lambda \geq (n-k) - k$ if n-k $\geq k$ and dim $\Lambda \geq k - (n - k)$ if $k \geq n - k$ so in any case dim $\Lambda \geq |n - 2k|$. If Λ is an attractor, then the filtration can be chosen such that $(M_s, M_{s-1}) =$ $(M_1, M_0 = \emptyset)$ so $f^*: H^0(M_s, M_{s-1}) = H^0(M_1) \to H^0(M_1)$ is nontrivial and it follows from Proposition 1 that dim $\Lambda \ge \max\{(n-k), k\}$. This proves the theorem in the case M is orientable.

If M is not orientable, let $\pi: \overline{M} \to M$ be an oriented two-fold covering of M and let $\overline{f}: \overline{M} \to \overline{M}$ cover f. The map $\pi_*: H_k(\overline{M}) \to H_k(M)$ is surjective (see [1, Theorem 1]) so $\pi^*: H^k(M) \to H^k(\overline{M})$ is injective and it follows that \bar{f}_k^* : $H^k(\overline{M}) \to H^k(\overline{M})$ has an eigenvalue which is not a root of unity. Now if \overline{A}_i $=\pi^{-1}(\Lambda_i)$ it may be that $\bar{f}:\bar{\Lambda}_i\to\bar{\Lambda}_i$ is not topologically transitive, but the proof for the orientable case applied to $\bar{f}: \overline{M} \to \overline{M}$ (using the filtration $\overline{M}_i =$ $\pi^{-1}(M_i)$) still shows that if $\bar{\Lambda} = \pi^{-1}(\Lambda)$ then dim $\bar{\Lambda} \geq |n-2k|$ and that if Λ is an attractor then dim $\bar{\Lambda} \geq \max\{(n-k), k\}$. Since dim $\Lambda = \dim \bar{\Lambda}$, the result follows.

References

- [1] R. Bowen, Entropy versus homology for certain diffemorphisms, Topology 13 (1974) 61-67.
- [2] A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965) 1-8.
- E. Dyer, On the dimension of products, Fund. Math. 47 (1959) 141-160.
- J. Franks, Morse inequalities for zeta functions.
- M. Hirsch & C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. Pure [5] Math., Vol. IV, 1970, 133-163.
- M. Hirsch, J. Palis, C. Pugh & M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1970) 121-134.
- W. Hurewicz & H. Wallman, Dimension theory, Princeton University Press, Princeton, 1941.
- [8] M. Shub, Morse-Smale diffeomorphisms are unipotent on homology, Proc. Sympos. Dynamical Systems, Salvador, Academic Press, New York, 1973.
- [9] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747-817.
- Γ101
- ——, The Ω-stability theorem, Proc. Sympos. Pure Math., Vol. IV, 1970, 289-297.
 ——, Stability and isotopy in discrete dynamical systems, Proc. Sympos. Dynamical [11]Systems, Salvador, Academic Press, New York, 1973.
- [12] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.